Adaptive convolution kernel for artificial neural networks

نویسندگان

چکیده

Many deep neural networks are built by using stacked convolutional layers of fixed and single size (often 3 × 3) kernels. This paper describes a method for learning the kernels to provide varying in layer. The utilizes differentiable, therefore backpropagation-trainable Gaussian envelope which can grow or shrink base grid. Our experiments compared proposed adaptive ordinary convolution simple two-layer network, deeper residual U-Net architecture. results popular image classification datasets such as MNIST, MNIST-CLUTTERED, CIFAR-10, Fashion, “Faces Wild” showed that statistically significant improvements on A segmentation experiment Oxford-Pets dataset demonstrated replacing U-shaped network with 7 improve its performance ability generalize.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System

Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...

متن کامل

Modeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System

Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...

متن کامل

Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks

In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...

متن کامل

Artificial neural networks: applications in pain physiology

Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...

متن کامل

Artificial neural networks: applications in pain physiology

Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Visual Communication and Image Representation

سال: 2021

ISSN: ['1095-9076', '1047-3203']

DOI: https://doi.org/10.1016/j.jvcir.2020.103015